Beauty and Charm at CDF Using the Hadronic Trigger

Christoph Paus

Lunch Meeting October 9, 2003

Outline

My main physics interest

- + contribute to solution of matter/antimatter puzzle
- + tests of the Standard Model with b hadrons
- + find new physics with b hadron decays

Experimental setup

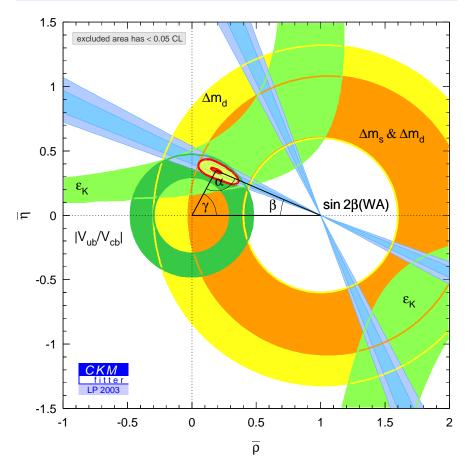
- + Tevatron accelerator
- CDF detector

Status and first results

- masses and lifetimes
- + mixing
- a new narrow state

The *CP* Puzzle and the *CKM* Matrix

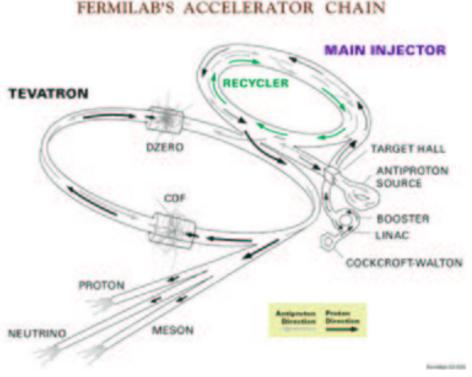
Matter/Antimatter asymmetry


- + why so much matter?
- + Sakharov says:CP must be violated
- + *CKM* matrix describes *CP* violation in SM
- + amount too small to explain matter/antimatter asymmetry
- + good spot for new physics

Measure *CKM* components

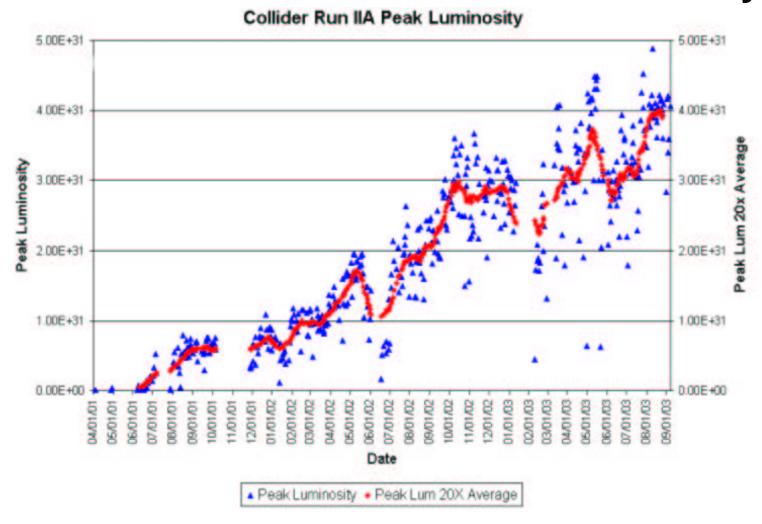
- + unitarity condition $VV^{\dagger} = 1$
- + derive unitarity triangle

Sakharov's Conditions (1966)


- + proton must decay
- universe had a thermal nonequilibrium phase
- + CP must be violated

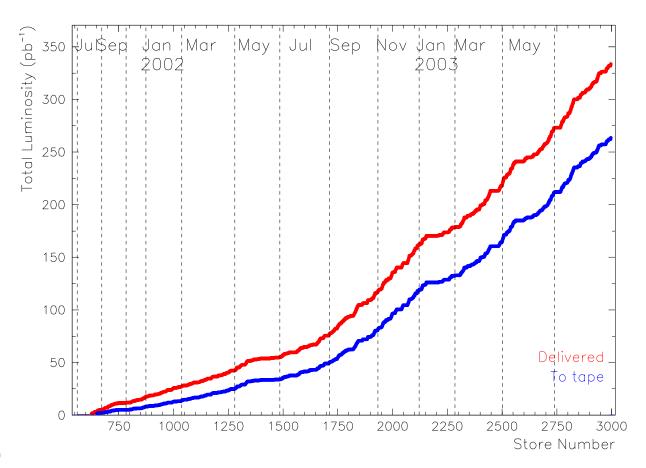
Tevatron Upgrade

Main injector


- new Tevatron injection stage TEVATRON
- accelerate and deliver
 higher intensity of protons
- + more efficient \overline{p} transfer
- + \overline{p} recycler (in progress)

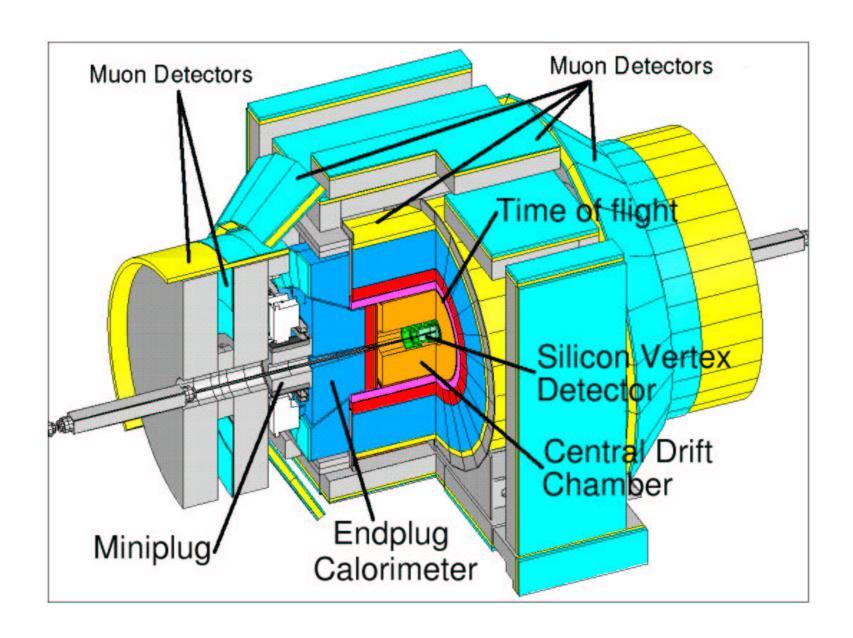
Overall improvements:

- + higher collision rate: 396 ns (36 × 36 bunches)
 - → 5-10 higher instantaneous luminosity than Run I
- + higher center-of-mass energy
 Run I − 1.8 TeV → Run II − 1.96 TeV

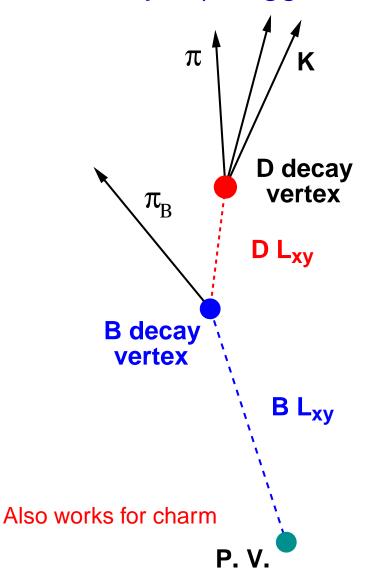

Performance: Instantaneous Luminosity

Accelerator Performance

- + record: $4.8 \times 10^{31} \text{ cm}^{-2} \text{s}^{-1}$
- + below expectations by about factor of 2(4)
- + improving slowly, 4-7 pb⁻¹ per week


Performance: Data Taking

For CDF:


- + Current 330 pb⁻¹, 260 pb⁻¹ to tape
- + For analysis 280 pb^{-1} , 220 pb^{-1} to tape
- $+ \approx 200 \text{ pb}^{-1}$ with all important systems on
- + 120 200 pb⁻¹ used for analyses shown in following

CDF II Detector



Run II Upgrades: Hadronic Trigger

Run I: only e, μ trigger

Level1 track trigger: high p_T Level2 track trigger: large d_0 Improves Run I sensitivity by 4-5 orders of magnitude

Bottom/Charm Production in $p\overline{p}$

Compare $\sigma(b\overline{b})$:

$$\Upsilon(4S) \approx 1 \text{ nb (only B}^0, B^+)$$

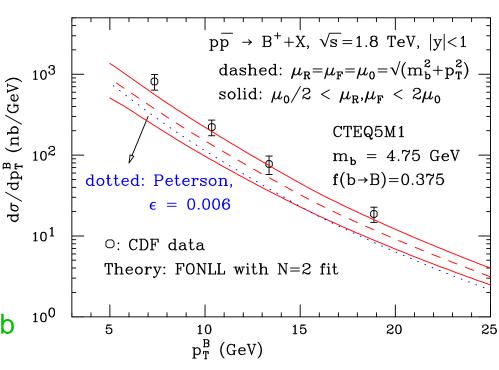
$$Z^0 \approx 7 \text{ nb}$$

$$p\overline{p} \approx 100 \,\mu b$$

Light quark σ (inelastic) 10^3 larger

at $p\bar{p}$ it is all about the trigger

Run I:
$$B^+ \to J/\psi K^+ \ (p_T > 6 \text{ GeV}, |Y| < 1)$$

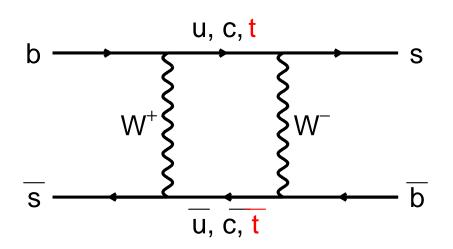

- + single inclusive (B^+): 3.6 \pm 0.6 μ b
- + Peterson fragmentation: $\varepsilon_b = 0.006 \pm 0.002$
- + $\sigma_{data}/\sigma_{theory} = 2.9$

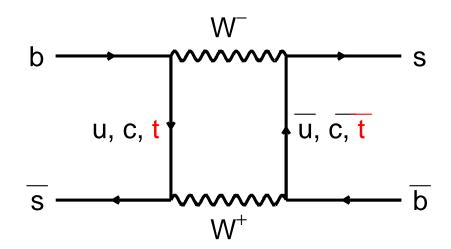
Run II:
$$D^+ o K\pi\pi$$
 ($p_T > 6$ GeV, $|Y| < 1$)

+ single inclusive (D^+): 4.3 \pm 0.7 μ b

Run II:
$$D^0 \rightarrow K\pi \ (p_T > 6 \text{ GeV}, |Y| < 1)$$

+ single inclusive (D^0): 9.3 \pm 1.1 μ b




Updated theory bottom production

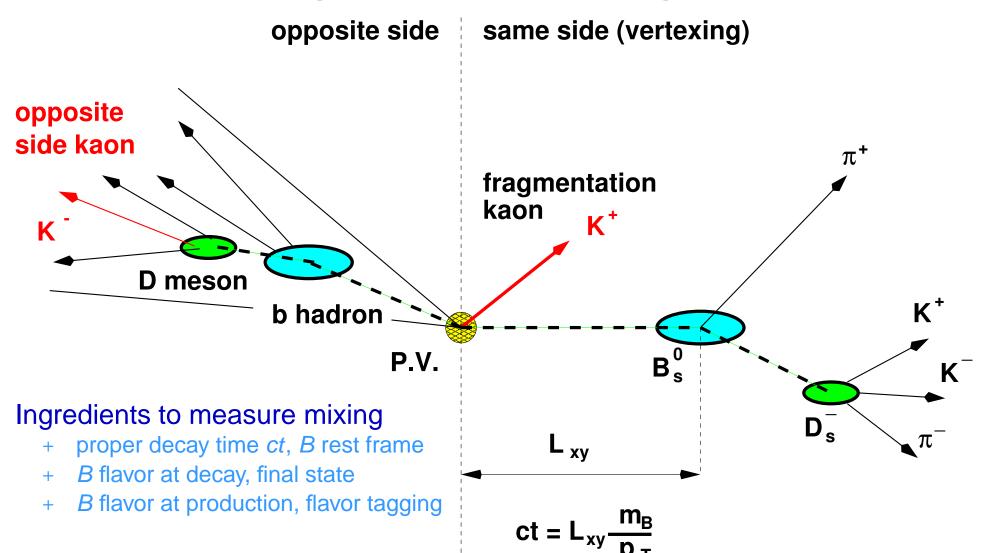
- + Peterson fragm. tuned for LL
- + different parameter: $\varepsilon_b = 0.002$
- + better even different fragm.
- + theory update FONLL Cacciari, Nason
- + $\sigma_{\text{data}}/\sigma_{\text{theory}} = 1.7$
- + data do not contradict theory

Quark Mixing for B Mesons

Feynman diagram of B mixing

Probability densities for *B*–meson mixing:

$$P(t)_{B^0 \to \overline{B^0}} = \frac{1}{2\tau} e^{-t/\tau} (1 - \cos \Delta mt)$$


$$P(t)_{B^0 \to B^0} = \frac{1}{2\tau} e^{-t/\tau} (1 + \cos \Delta mt)$$

$$\tau \text{ is the } B^0 \text{-meson lifetime}$$

Measure oscillation frequency: Δm

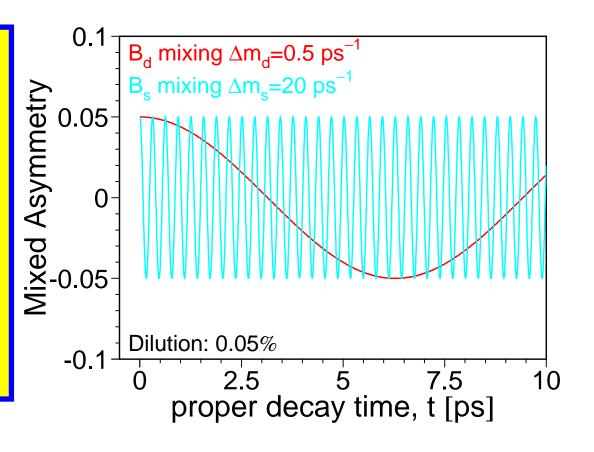
also $x = \Delta m/\Gamma$

B_s Mixing: Experimental Ingredients

Measure time dependent asymmetry

$$A_0(t)_{(meas)} \equiv \frac{N(t)_{RS} - N(t)_{WS}}{N(t)_{RS} + N(t)_{WS}} = D\cos(\Delta m_s t)$$

Why is that so difficult?


B_s mixing

+ very fast

Challenge

- + precise vertex
- + precise momentum
- + many events
- tagging essential

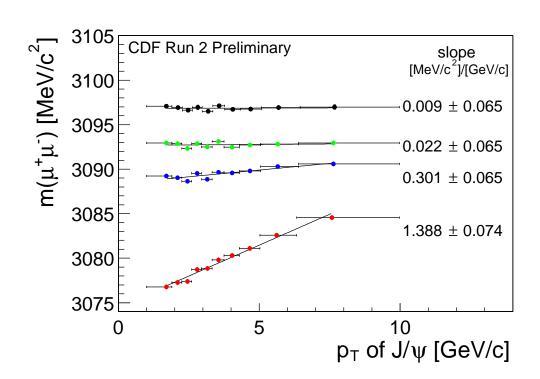
Very tricky!

Where are we so far?

- + established momentum and vertex resolution
- + started on the tagging
- + established signal and details of signal composition
- + make interesting measurements along the way

Momentum Scale Calibration

First measurements


- + mass: B^0 , B^+ B_s , Λ_b
- + mass difference: $m_{D_s} m_{D^+}$
- + lifetimes: inclusive, exclusive

Next measurements

- + hadronic branching ratios
- + B⁰ mixing (taggers under way)
- + excellent prep for B_s mixing

Calibration of the tracking

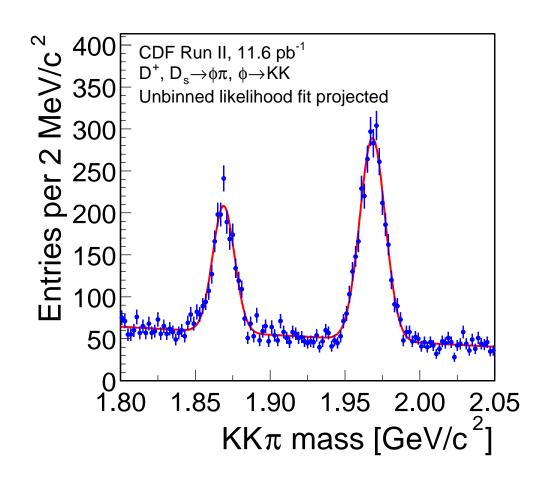
- + use: $J/\psi \to \mu^{+}\mu^{-}$ (500k)
- + measure material in detector
- + measure momentum scale
 → adjust B field
- + new method invented by MIT
- + more sophisticated than Run I
- + first blessed Run II analysis

Calibration procedure

- + raw tracks
- + nominal E loss corrections
- + fine tuned E loss corrections
- adjust overall scale (B field)

D Meson Mass Difference - First Tevatron Publication

Conceptual idea


- + $D_s^+ \rightarrow \phi \pi^+ (\phi \rightarrow K^+ K^-)$
- + $D^+ \rightarrow \phi \pi^+ (\phi \rightarrow K^+ K^-)$
- + almost identical kinematics
- + measure difference
- basically no systematics

Result $m(D_s^+) - m(D^+)$:

99.41 \pm 0.38 (stat) \pm 0.21 (syst) MeV/ c^2

About the measurement

- first Tevatron publication
- + uses new SVT trigger
- + agrees with old world average $99.5 \pm 0.50 \text{ MeV}/c^2$

Recent BaBar:

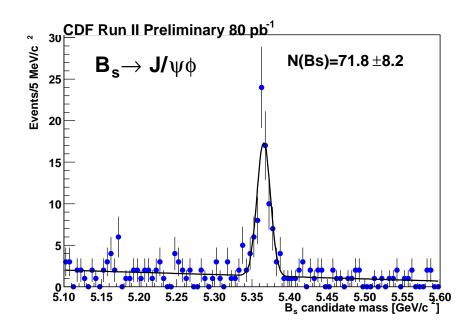
PRD 65(2002)091104

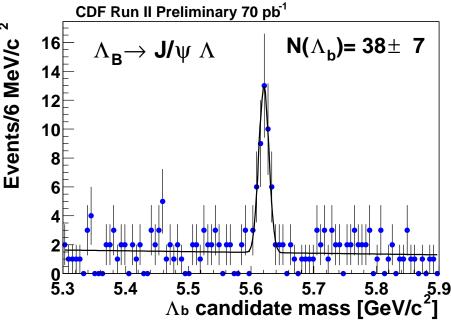
 98.4 ± 0.1 (stat) ± 0.3 (syst) MeV/ c^2

B Hadron Masses - World Best Measurements

Largest J/ψ modes

 $\begin{array}{ll} + & B^+ \rightarrow J/\psi K^+ \\ + & B^0 \rightarrow J/\psi K^{*0}, B^0 \rightarrow J/\psi K^0_S \\ + & B^0_s \rightarrow J/\psi \phi \\ + & \Lambda^0_b \rightarrow J/\psi \Lambda \end{array}$


B meson masses in MeV/ c^2


already blessed

 $B^+: 5279.32 \pm 0.68 \text{ (stat)} \pm 0.94 \text{, (sys)}$ $B^0: 5280.30 \pm 0.92 \text{ (stat)} \pm 0.92 \text{ (sys)}$ $B_s^0: 5365.5 \pm 1.3 \text{ (stat)} \pm 0.94 \text{ (sys)}$ $B^0: 5281.54 \pm 0.80 \text{ (stat)} \pm 1.2 \text{ (sys)}$ $\Lambda_b^0: 5620.4 \pm 1.6 \text{ (stat)} \pm 1.2 \text{ (sys)}$ publishing soon!!

CDF Momentum scale

- + best B_s^0 and Λ_b^0 in the world
- + best systematic around ..
- + excellent prerequisite

B Hadron Lifetimes from MIT

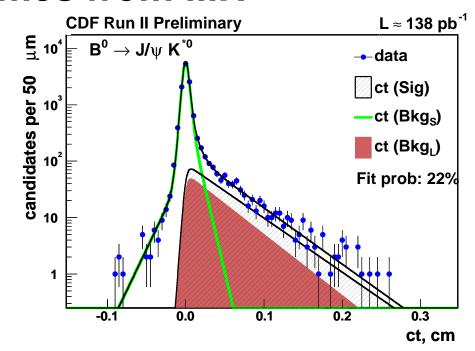
Large sample of $J/\psi \to \mu^+\mu^-$ events

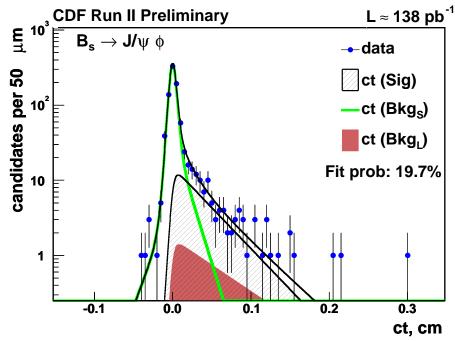
- + calibrate resolution
- + understand alignment
- + measure inclusive *B* lifetime
- + so far only r- ϕ silicon used

Inclusive J/ψ (blessed)

$$c au_{incl} = 458 \pm 10$$
 (stat) ± 11 (sys) μ m

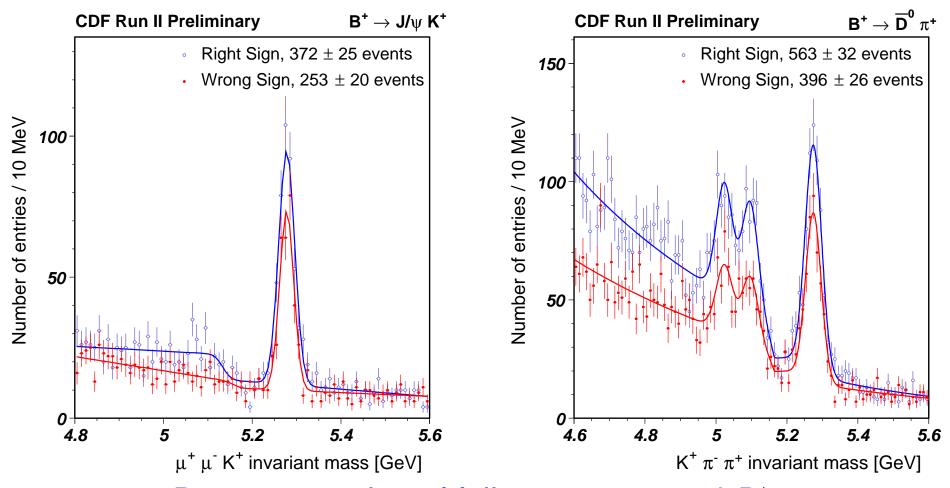
Exclusive J/ψ (blessed)


$$c\tau_{B^+} = 490 \pm 15$$
 (stat) ± 11 (sys) μ m


$$c\tau_{B^0} = 453 \pm 19$$
 (stat) ± 6 (sys) μ m

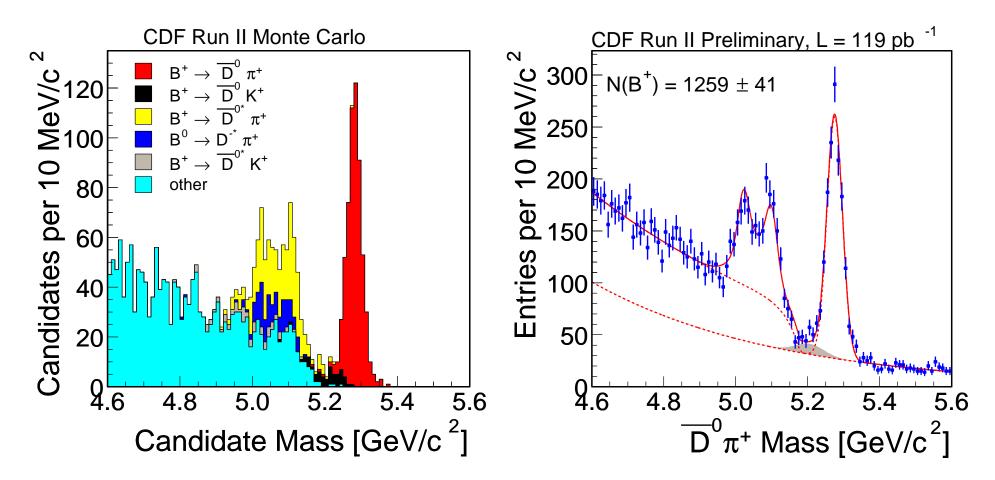
$$c au_{B_s^0} = 399 \pm 43 \, ext{(stat)} \pm 6 \, ext{(sys)} \, \mu ext{m}$$

About results


- + silicon already well understood
- + prerequisite for $\Delta\Gamma_{\rm s}$
- + major improvements expected:Layer 00, 3D tracking, alignments
- + important for B_s mixing

Ch. Paus, Lunch Meeting, October 9, 2003 - 15

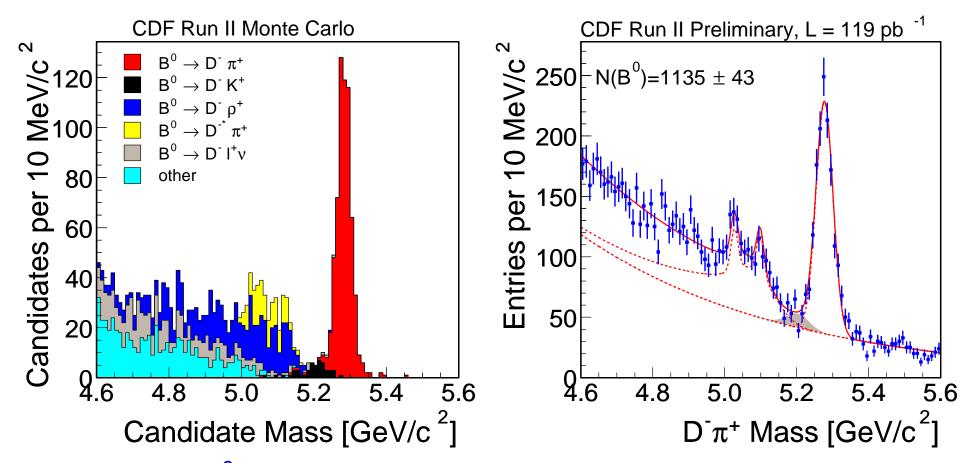
Tagging Preparations


Decent samples of fully reconstructed B⁺

first study of same side pion tagger in Run II:

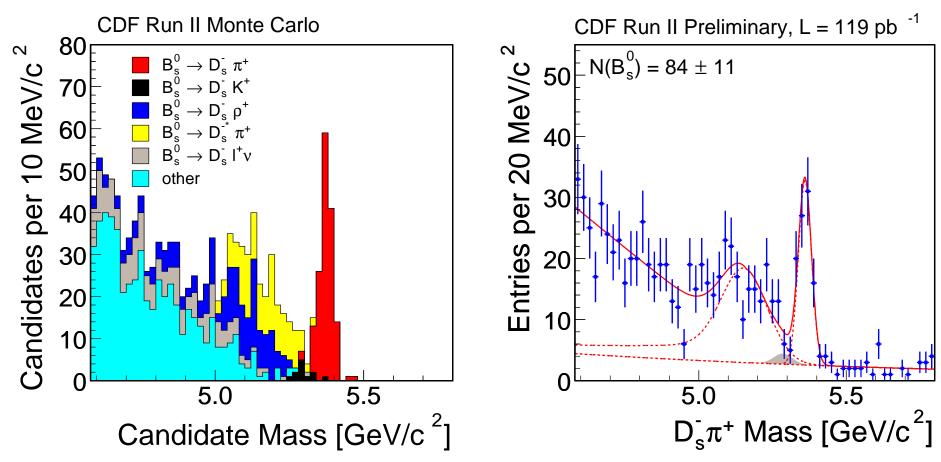
 $J/\psi K$: $\varepsilon D^2 = (2.4 \pm 1.2)\%$; $D^0 \pi$: $\varepsilon D^2 = (1.9 \pm 0.9)\%$

compares well with Run I, B⁰ mixing measurement under way


Reconstruct Exclusive Hadronic Decays

Reconstruct $B^+ o \overline{D}^0 \pi^+$

- + first time at a hadron machine, very clean
- + very large calibration signal, precise test for reflections
- + serves as normalization channel for rate measurements


Reconstruct Exclusive Hadronic Decays

Reconstruct $B^0 \to D^-\pi^+$

- + practically identical to $B^0_s o D^-_s \pi^+$
- + most systematics for rate measurements cancel
- + again reflections very well described

First Time Observation

Reconstruct $B^0_s o D^-_s \pi^+ \ (D^-_s o \phi \pi^-)$ – unique at CDF

$$\frac{f_{s}Br(B_{s} \to D_{s}^{-}\pi^{+})}{f_{d}Br(B^{0} \to D^{-}\pi^{+})} = 0.35 \pm 0.05(stat) \pm 0.04(syst) \pm 0.09(BR)$$

result is being published (less events than hoped for)

CDF Flagship Analysis: B_s Mixing

Summary

- + B_s mixing unique at Tevatron
- + one side of unitarity triangle
- + complements B factories
- + more difficult than anticipated

Baseline

+ 500/pb: 2σ at $\Delta m_s = 15^{-1}$ ps (world best limit)

Modest improvements

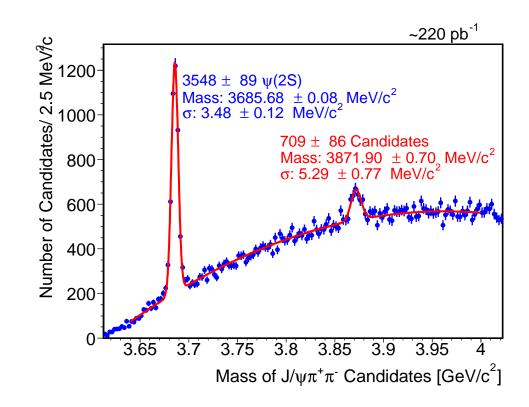
- + 1.7/fb: 5σ at $\Delta m_s = 18^{-1}$ ps (SM prediction)
- + 3.2/fb: 5σ at $\Delta m_s = 24^{-1}$ ps (complete SM prediction)

Work aggressively to improve

Topics of studies

- more events at a given luminosity (trigger)
- improve vertex resolution
- enhance flavor tagging (improve TOF reconstruction)

Recent Surprise in Spectroscopy


Belle observes narrow state

- + final state $J/\psi\pi^+\pi^-$
- + exclusive: $B^+ \rightarrow J/\psi \pi^+ \pi^- K^+$
- + 35.7 ± 6.8 events
- possibly charmonium
- + mass is unexpected
- + shown August 12, 2003

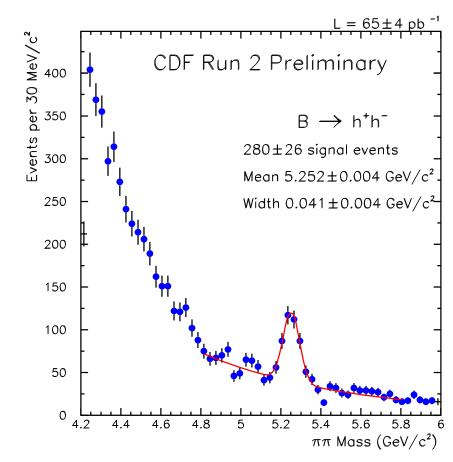
CDF confirms September 20

- + final state $J/\psi\pi^+\pi^-$
- mostly prompt production
- + $\overline{p}p$ different initial state
- + 709 ± 86 events

CDF response is very prompt competitive complementary

Mass measured by CDF: $3871.4 \pm 0.7 \pm 0.4 \text{ MeV}/c^2$

Compares well with Belle: $3872.0 \pm 0.6 \pm 0.5 \text{ MeV}/c^2$


CKM Parameter: Angle γ

Use $B \rightarrow hh'$

- + γ of unitarity triangle
- + decompose: $B_{d,s} \to K\pi, \, B_d \to \pi\pi, \, B_s \to KK$
- + determine penguin pollution
- + 'model independent' γ
- + complementary to BaBar/Belle
- + would you have believed that?

Need more statistic: bandwidth/luminosity

CDF potential proven competitive complementary

Significant
$$B_s \rightarrow K^+K^-$$
 observed: $\frac{f_s Br(B_s \rightarrow KK)}{f_d Br(B^0 \rightarrow K\pi)} = 0.74 \pm 0.20 \pm 0.22$

Measure
$$A_{CP} = \frac{N(\overline{B} \rightarrow K^-\pi^+) - N(B \rightarrow K^+\pi^-)}{N(\overline{B} \rightarrow K^-\pi^+) + N(B \rightarrow K^+\pi^-)}$$

 $0.02 \pm 0.15 \pm 0.02$

Summary

B physics at CDF ($p\overline{p}$ machine)

- + is complementary to the B factories
- can compete even in some common aspects

B_s mixing unique at Tevatron

- more difficult than expected
- .. but it is doable, first results by summer
- preparations are going very well
- a lot of additional handles to work on

Doing good physics meanwhile

- + mass measurements, lifetime ratios and $\Delta\Gamma_s$
- branching ratio measurements
- + spectroscopy: onia, exotics (penta/tetra quarks etc.)